MORRF*: Sampling-Based Multi-Objective Motion Planning
نویسندگان
چکیده
Many robotic tasks require solutions that maximize multiple performance objectives. For example, in path-planning, these objectives often include finding short paths that avoid risk and maximize the information obtained by the robot. Although there exist many algorithms for multi-objective optimization, few of these algorithms apply directly to robotic path-planning and fewer still are capable of finding the set of Pareto optimal solutions. We present the MORRF∗ (Multi-Objective Rapidly exploring Random Forest∗) algorithm, which blends concepts from two different types of algorithms from the literature: Optimal rapidly exploring random tree (RRT∗) for efficient path finding [Karaman and Frazzoli, 2010] and a decomposition-based approach to multi-objective optimization [Zhang and Li, 2007]. The random forest uses two types of tree structures: a set of reference trees and a set of subproblem trees. We present a theoretical analysis that demonstrates that the algorithm asymptotically produces the set of Pareto optimal solutions, and use simulations to demonstrate the effectiveness and efficiency of MORRF∗ in approximating the Pareto set.
منابع مشابه
ACS-PRM: Adaptive Cross Sampling Based Probabilistic Roadmap for Multi-robot Motion Planning
In this paper we present a novel approach for multi-robot motion planning by using a probabilistic roadmap (PRM) based on adaptive cross sampling (ACS). The proposed approach, we call ACSPRM, consists of three steps, which are C-space sampling, roadmap building and motion planning. Firstly, an adequate number of points should be generated in C-space on an occupancy grid map by using an adaptive...
متن کاملSampling-based Multi-robot Motion Planning
This paper describes a sampling-based approach to multi-robot motion planning. The proposed approach is centralized, which aims to reduce interference between mobile robots such as collision, congestion and deadlock, by increasing the number of waypoints. The implementation based on occupancy grid map is decomposed into three steps: the first step is to identify primary waypoints by using the V...
متن کاملMulti-Robot Motion Planning
We present a simple and natural extension of the multi-robot motion planning problem where the robots are partitioned into groups (colors), such that in each group the robots are interchangeable. Every robot is no longer required to move to a specific target, but rather to some target placement that is assigned to its group. We call this problem k-color multi-robot motion planning and provide a...
متن کاملMulti-Objective 4D Vehicle Motion Planning in Large Dynamic Environments
This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a se...
متن کاملk-Color Multi-robot Motion Planning
We present a simple and natural extension of the multi-robot motion planning problem where the robots are partitioned into groups (colors), such that in each group the robots are interchangeable. Every robot is no longer required to move to a specific target, but rather to some target placement that is assigned to its group. We call this problem k-color multi-robot motion planning and provide a...
متن کامل